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Abstract—The rapid deployment of sensing technology in smartphones and the explosion of their usage in people’s daily lives provide
users with the ability to collectively sense the world. This leads to a growing trend of mobile healthcare systems utilizing sensing data
collected from smartphones with/without additional external sensors to analyze and understand people’s physical and mental states.
However, such healthcare systems are vulnerable to user spoofing, in which an adversary distributes his registered device to other
users such that data collected from these users can be claimed as his own to obtain more healthcare benefits and undermine the
successful operation of mobile healthcare systems. Existing mitigation approaches either only rely on a secret PIN number (which can
not deal with colluded attacks) or require an explicit user action for verification. In this paper, we propose a user verification system
leveraging unique gait patterns derived from acceleration readings to detect possible user spoofing in mobile healthcare systems. Our
framework exploits the readily available accelerometers embedded within smartphones for user verification. Specifically, our user
spoofing mitigation framework (which consists of three components, namely Step Cycle Identification, Step Cycle Interpolation, and
Similarity Comparison) is used to extract gait patterns from run-time accelerometer measurements to perform robust user verification
under various walking speeds. We show that our framework can be implemented in two ways: user-centric and server-centric, and it is
robust to not only random but also mimic attacks. Our extensive experiments using over 3,000 smartphone-based traces with mobile
phones placed on different body positions confirm the effectiveness of the proposed framework with users walking at various speeds.
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This strongly indicates the feasibility of using smartphone based low grade accelerometer to conduct gait recognition and facilitate

effective user verification without active user cooperation.

Index Terms—User verification, smartphone, mobile healthcare systems, gait recognition

1 INTRODUCTION

MART devices (e.g., Smart phone, PDAs, tablets, etc.)

have become increasingly popular and are playing sig-
nificant roles in our daily lives. In particular, with sensors
that can be easily attached to smartphones and the plurality
of sensors embedded within smartphones, the collected
sensing data can be mined for the understanding of people’s
physical and mental health states. For example, barometer
sensor can be attached to smartphones equipped with accel-
erometer and microphone to collect sensing data, which can
be mined to uncover people’s daily life activities [1]. Infor-
mation about users’ daily life activities and behaviors can
further assist in the development of various emerging appli-
cations in the healthcare domain. For instance, walking
activities and conversations extracted from collected sensor
data can be used to predict users” physical and mental con-
ditions [1].
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However, such healthcare systems are vulnerable to user
spoofing, in which an adversary can distribute his regis-
tered device to other users such that data collected from
these users can be claimed to be his own. By doing so, the
adversary can claim potential health benefits that are allo-
cated to people with certain illnesses even though he may
not have any illnesses. For instance, in the social commu-
nity-based mobile healthcare systems for facilitating epide-
miology research [2] and disease propagation control [3], an
adversary can attract additional vaccine allocation by per-
forming user spoofing and thus undermine the regular
operations of such mobile healthcare systems.

Mitigating user spoofing is not an easy task. Most smart-
phones only offer user verification methods which rely on
explicit manual entry of a secret PIN number. This is insuffi-
cient as many users only go through such a verification
process once when a smartphone is switched on [4]. In addi-
tion, verification based on PIN numbers are not applicable
to the cases when an adversary collude with other users.
Recently, new techniques utilizing biometric characteristics
such as fingerprints have been proposed for user verifica-
tions. However, fingerprint readers are not available on
most smartphones, making it less suitable for mobile health-
care systems. Further, this technique also requires an
explicit user action for verification, e.g., putting a finger on
the fingerprint reader.

In this work, we exploit users’ unique physical traits,
which are hard to forge, to mitigate user spoofing in mobile
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healthcare systems. Our design goal is to enable user spoofing
detection without relying on explicit user cooperation or addi-
tional hardware such as a fingerprint reader. The basic idea is
to utilize a user’s gait pattern because a person’s gait is often
unique and can serve as a useful discriminator. The presence
of user spoofing causes the newly identified gait patterns to
be dramatically different from a user’s normal gait patterns
and hence such attacks can be detected. To the best of knowl-
edge, our work is the first that utilizes gait information to
detect user spoofing in mobile healthcare systems.

Specifically, we design a user verification system leverag-
ing gait patterns derived from accelerometer readings. Our
framework employs readily available accelerometers
embedded within smartphones instead of deploying addi-
tional hardware for user verification. While gait recognition
via accelerometer sensors have been studied using sensors
with high sampling rates (e.g., larger than 100 Hz in [5], [6]),
we focus on addressing several unique challenges that one
faces when using low grade accelerometers in mobile
healthcare systems. First, low grade accelerometers (e.g.,
those in smartphones) has a lower sampling rate (e.g., lower
or equal to 50 Hz), posing possible difficulty in capturing
each user’s unique gait patterns. Second, users’ walking
speeds usually vary during the verification process, making
it hard to identify step cycles accurately. Third, the user ver-
ification process should be able to complete with small
number of measurements. Last but not least, an attacker is
able to mimic a legitimate user’s walking patterns in an
attempt to fool the system. Our proposed user verification
system should be able to reject all such attempts.

To cope with these challenges, our gait pattern based
user verification system consists of three components: Step
Cycle Identification, Step Cycle Interpolation, and Similarity
Comparison. During Step Cycle Identification, we utilize the
fact that a user’s gait patterns should be repeatable, and
hence walking traces collected from a user should be highly
correlated. We thus construct a template for each user’s
unique gait pattern by identifying the first distinguishable
step cycle, and then utilize the high correlation between a
user’s step cycles to identify other step cycles within a trace.
This approach can derive step cycles more accurately than
other methods used in previous studies [5], [6], which iden-
tify step cycles by identifying local minimas repeatedly
within a trace. Our Step Cycle Identification method has the
adaptive learning capability to update a user’s step cycle
template using real-time feedback.

A user’s walking speed varies and is determined by
many factors such as his/her health conditions, age, gender,
environment, and so on. Our goal is to design a scheme that
works well irrespective of what speed a user walks at when
the accelerometer readings are collected. Our Step Cycle
Interpolation component helps to align identified step
cycles of different lengths into normalized cycles of fixed
length. This interpolation step allows our scheme to per-
form gait recognition robust to various walking speeds. In
our system, a user’s walking profile is constructed during a
training process. And the system only needs the user to
upload one accelerometer trace under any speed at his con-
venience for user profile construction, without requiring
extensive uploading of multiple traces to cover different
walking speeds.
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Our Similarity Comparison component makes the related
mobile healthcare system robust by using the fact that sev-
eral sub-events embedded within gait patterns can uniquely
characterize a user and are hard to imitate. A user may
change his/her walking speeds, but the uniqueness embed-
ded in each gait pattern remains unchanged. Our user veri-
fication system can be deployed in two ways: user-centric
or server-centric. In the user-centric approach, each user
stores his user profile in a mobile device (e.g., smartphone),
which runs the verification software. To work with the lim-
ited computational resources on a mobile device, our user-
centric verification approach utilizes a weighted Pearson
correlation coefficient (PCC) based method with low com-
putation overhead during the similarity score computation.
Whereas in the server-centric approach, the server (e.g.
deployed by a healthcare insurance company) conducts
user verificattion based on the gait features extracted from
accelerometer readings collected within a user’s mobile
device. At the server side, our similarity comparison scheme
is based on the Support Vector Machine (SVM) algorithm
[7]. The machine learning based SVM approach yields a
higher accuracy compared to the basic correlation coeffi-
cient based scheme.

Our techniques can be useful to many healthcare systems
utilizing human sensing data. We summarize our contribu-
tions as following;:

e We design a user verification system by extracting
the unique gait patterns of users for mobile health-
care systems.

e We exploit readings from the low-grade accelerome-
ter embedded in a user’s smartphone to derive the
correlation relationship inherent in the user’s walk-
ing traces. Our scheme can achieve more robust step
cycle identification compared to previous studies
even when the user’s walking speeds vary.

e We develop several techniques including automatic
template update and step cycle interpolation to cope
with varying walking speeds, and preserve the
unique characteristics in the user’s gait pattern for
accurate user verification.

e We develop our framework in two ways: user-cen-
tric and server-centricc. We show that both
approaches are robust to attacks including the
attacker walks using his/her own walking style, and
the attacker observes and mimics a legitimate user’s
walking patterns.

e  We collect 3,048 accelerometer traces from multiple
users over a period of 6 months. The results show
that our system can effectively verify honest users
when they walk at various speeds with the phone
placed on different body positions.

The rest of the paper is organized as follows: We first put
our work into the broader background of the related
research in Section 2. We then describe the system model
and the attack model used in this paper in Section 3. Next,
we present our user verification system in Section 4. In
Section 5, we validate the feasibility and effectiveness of our
user verification system through extensive experiments con-
ducted using smartphones. Finally, we conclude our work
in Section 6.
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2 RELATED WORK

In this work, we consider user spoofing in mobile healthcare
systems, which is different from the device-identity spoof-
ing attacks [8], [9] considered in wireless networks. It may
appear that cryptographic authentication schemes [10] are
effective for thwarting user spoofing. However, the adver-
sarial user may let the person (who collects the sensor data
for him) know about the security information (e.g., pass-
words) stored in mobile devices to pass the security checks
easily. Schemes utilizing the user’s unique physical or phys-
iological characteristics such as fingerprint [11], [12], [13]
are attractive. These methods rely on additional hardware
or require users to take explicit actions, and may not be suit-
able for mobile healthcare systems that continuously moni-
tor users’ behaviors.

Along this direction, there is existing work employing
users’ behavioral traits such as gaits for user verification. In
[14], [15], [16], a vision-based gait recognition scheme has
been proposed. The system uses several cameras to record a
user when walking. Some background segmentation techni-
ques are then used to extract features from recorded images
to verify the user. In floor sensor-based approaches [17],
[18], the sensors are placed on the floor and when people
walk on the floor, the identity of a user can be authenticated
by the exerted force measured by the sensor. However,
additional hardware such as cameras and floor sensors is
also needed for these schemes to work but such hardware
may not be always available.

There is existing work [5], [19] using dedicated wearable
accelerometers for gait recognition. The main advantage of
using a wearable accelerometer sensor for gait recognition
is that it provides unobtrusive verification of a user’s iden-
tity without requiring his explicit actions. Gafurov et al. [20]
further studies a hostile scenario on the accelerometer based
gait recognition system. In this scenario, the attackers tend
to mimic the targeted person’s gait patterns. The authors
show that their proposed system appears to be robust
against such hostile scenario. However, expensive dedi-
cated accelerometers with high sampling rates are used in
these works. Bajrami et al. [21] focuses on using accelerome-
ter sensors on smartphones to detect physical activities
including walking, running, sitting and standing. It points
out the possibility to perform gait recognition by using the
results from activity recognition. In [6], the uniqueness of
the gait in terms of foot motion with respect to the shoe
attribute and axis of the motion is analyzed. It is not clear
how their methods can deal with variable walking speeds.
Our work is different in that we aim to employ gait informa-
tion to perform user verification and detect the presence of
user spoofing in mobile healthcare systems. Our approach
targets to extract the unique characteristics of a user’s gait
pattern from sensor data collected from low grade acceler-
ometers embedded within smartphones, and is robust with
varying walking speeds.

3 FRAMEWORK OVERVIEW

In this section, we first describe the mobile healthcare sys-
tem model that is used in this paper. We then present the
adversary model and provide an overview of our user veri-
fication framework.
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3.1 System Model

We consider a mobile healthcare monitoring system in
which a monitoring application runs on a user’s smart-
phone and each user registering for its service is given a
unique user identifier. This monitoring application can col-
lect readings from embedded sensors within smartphones
or external sensors attached to smartphones. Such sensor
data will be analyzed to assess that user’s physical activity
levels or physiological conditions. For instance, a user’s
physical activity level can be assessed by monitoring his
conversational activities, while measurements of heartbeats
and blood pressure can be used to predict his psychological
conditions [22]. Such sensing data collected by the monitor-
ing device (e.g. smartphones) is sent to a system server. The
server can then derive users’ physical and mental well
beings based on the rich information embedded in the sens-
ing data. The system server then takes relevant follow-up
actions based on such analysis, e.g. rewards those users
who have weight problems for increasing their physical
activity level. We envision that this type of mobile health-
care system will become very useful as it utilizes the infor-
mation derived from wusers’ daily lives, instead of
requesting manual reporting from a user which could be
inaccurate and error-prone [23]. Emerging applications
enabled by such mobile healthcare systems include:

e The medical professionals from healthcare compa-
nies can monitor the health conditions of patients
with heart diseases by monitoring their heartbeats.
Based on patients” health conditions, the healthcare
company can determine the frequency at which such
patients should visit the doctors [24].

e Users’ behavioral patterns and physical activity lev-
els can be tracked by healthcare companies to facili-
tate early detection of signs of health problems (e.g.,
depression) [1].

e Companies that sell healthcare related applications
e.g.”I Do Move” [25] can convince healthy food com-
panies to provide discount coupons for users who
use their healthcare applications by sharing some
statistics, e.g. total number of walking steps collected
by their applications, with these food companies.

3.2 Adversary Model

We consider user spoofing in such mobile healthcare sys-
tems. The user spoofing could be conducted by an adver-
sary user who passes his monitoring device, e.g. his
smartphone, to a colluding person for a short period of
time, and uploads the data collected by the other person
instead in an attempt to gain more health benefits. For
example, users who registered at “I Do Move” periodically
upload their total number of walking steps to their account.
Once their total walking steps reach a certain milestone,
they will be rewarded with healthy food discount coupons.
Adversarial users can ask others to walk with their devices
and hence reach the qualifying milestone faster. Further-
more, an adversarial user can distribute his monitoring
device to other people (e.g., a colluded user) who may suffer
certain illnesses to collectively fool a mobile healthcare sys-
tem which allocates health benefits to certain patients. The
data collected from these spoofers will be mistakenly
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regarded as being obtained from the adversarial user. Thus,
the related healthcare system may mistakenly classify this
adversarial user as someone who has certain illness and
hence qualified to enjoy certain healthcare treatments or
benefits. Such spoofing attacks will significantly reduce the
effectiveness of the healthcare management system and
undermine the successful deployment of mobile healthcare
applications since healthcare benefits will be given to the
adversarial users.

In this work, we explore utilizing users’ unique physical
traits (i.e., gait patterns) which are hard to forge to perform
unobtrusive user verification in the mobile healthcare sys-
tems. Nevertheless, a spoofer may attempt to mimic adver-
sarial user’s walking patterns to fool the system. Thus, we
evaluate the robustness of our user verification scheme by
studying two representative attacks:

e  Random attack. A spoofer walks using his/her own
walking style and has no information other than the
knowledge of the user verification system, e.g., gait-
based patterns are used for user verification.

e  Mimic attack. Besides the knowledge of the user veri-
fication system, a spoofer has the knowledge of a
legitimate user’s (i.e., the adversary user who passes
his device to the spoofer) walking styles and hence
mimics his walking patterns in an attempt to fool the
system.

3.3 User Verification Framework

We build a framework that utilizes user gait patterns
extracted from accelerometer readings using readily avail-
able accelerometers embedded within smartphones. To pre-
vent an adversary from launching replay attacks using a
user’s accelerometer readings, similar to [26], an encrypted
time-stamped identifier can be generated for each block of
the accelerometer measurements. The system will then
examine these time-stamped identifiers to ascertain that the
measurements are originally collected. The full discussion
of this security issue is out of the scope of this paper and
will be included in our future work. Our framework can be
implemented in two ways: server-centric and user-centric.

In the user-centric approach, user verification is per-
formed on the smartphone. An initial user’s profile will
be constructed and stored in the smartphone. The details
of the user profile construction are described in Section 4.
The user verification is then performed on smartphones
with low computational complexity. Specially, we use a
correlation coefficient based approach to help computing
similarity scores between the user profile and gait fea-
tures extracted from user’s smartphone. If the user verifi-
cation fails, i.e., the user spoofing is detected, the sensing
data collected from this user’s mobile device will not be
reported back to the server.

In the server-centric approach, gait features extracted from
accelerometer readings are sent to a centralized server for
user verification. We use a data mining based technique to
perform user verification by comparing the stored user pro-
files with gait features extracted from user’s smartphone. In
particularly, we train a SVM-based classifier using collected
traces from users. The trained SVM-based classifier is then
utilized to test real time measurements submitted for user
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verification. The server will decide whether to accept the
sensing data collected from this user based on the user veri-
fication result.

4 USER VERIFICATION BASED ON GAIT PATTERNS

In this section, we detail our user verification system. The
system can be deployed in both user-centric as well as
server-centric framework.

4.1 Challenge and Design Goals

The goal of our smartphone enabled gait-based user verifi-
cation system is to conduct user verification without relying
on additional infrastructures or explicit user actions. This
allows a pure software solution. Such a system should be
robust against user spoofing attacks. To fulfill such a goal in
mobile healthcare systems, we need to deal with the follow-
ing challenges.

Robust to various walking speeds. Users’ walking speeds
vary under different scenarios and environments. The gait
recognition process should be robust to various walking
speeds in order to facilitate an effective user verification.

Reasonable accuracy. Our framework leverages the accel-
erometers on smartphones with a lower sampling rate
(e.g., 50 Hz), which is about half the sampling rate of the
regular accelerometer sensors. Our technique needs to
achieve reasonable attack detection accuracy using read-
ings collected from accelerometers embedded within off-
the-shelf smartphones.

Low detection latency. Our user verification system should
be able to detect the presence of user spoofing with small
number of measurements. In this way, the framework can
avoid wasting computational cost spent on processing the
sensor data reported from a user’s mobile device for the cor-
responding healthcare needs.

4.2 Scheme Overview

The basic idea underlying our user verification system is
based on the observation that the gait pattern is unique for
each person and differs between different people. This is in-
line with the observation made by researchers in [27] who
conduct experiments with a sufficiently large gait database
with over 700 users and found that their gait patterns are
unique. When a user spoofing is present, the extracted gait
pattern from the run-time accelerometer measurements
from smartphones may differ significantly, and hence such
observation can be used to detect the attack and perform
user verification.

Our scheme, as shown in Fig. 1, consists of three main
sub-tasks: Step Cycle Identification, Step Cycle Interpolation
and Similarity Comparison. When the verification procedure
starts, step cycle sequence needs to be first identified from
the run-time accelerometer measurements. A step cycle
template based technique is proposed to accurately capture
the uniqueness embedded in each person’s gait. This tem-
plate can be dynamically updated when a user’s physical/
medical situation changes. The identified step cycle
sequence is further interpolated to deal with various walk-
ing speeds when a user is at different environments. A
user’s initial profile contains the user’s gait pattern and is
constructed when a user first submits its accelerometer
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Fig. 1. Overview of our user verification system using gait patterns.

measurements. The profile is obtained by utilizing the Step
Cycle Identification and Step Cycle Interpolation. The Step
Cycle Interpolation component allows robust user verifica-
tion even when the user’s walking speed during an run-
time measurement is different from that in a user’s profile.
A user profile can also be updated when the initial profile
significantly deviates from a user’s current gait patterns
caused by physical/medical situation changes: the user sub-
mits a new sequence of accelerometer measurements and
the user profile will be re-generated. This updating process
happens infrequently and an in-person verification of that
user is required to confirm that the accelerometer measure-
ments sent by a user match his/her true identity. The user
verification is then performed by conducting similarity
comparison between the initial user profile and the
extracted gait features from the run-time traces. If a user
distributes his device to another person who acts as a
spoofer, a lower similarity value will be obtained after the
computation because the gait patterns between two people
differ dramatically, and consequently the user spoofing is
detected. We next describe the sub-tasks in detail.

4.3 Step Cycle Identification

Human gait follows a cyclic pattern. In this work, the event
that we use to mark the beginning of the step cycle is the
heel strike of the swing leg [14]. At that moment, the per-
son’s feet are both on the ground and they are farthest from
each other. The vertical acceleration of the impact can be
observed as a local minima in the accelerometer readings.
Thus, the step cycle can be identified by extracting the time-
stamps of the heel strikes. However, identifying the step
cycle is challenging because the accelerometer readings can
be distorted due to the irregular movement of the user’s
body or the change of walking speeds. The commonly used
step cycle identification techniques [5], [6], [20] identify the

gait cycles by conducting the typical cycle identification
repeatedly in the traces. The problem is that if the cycle
identification for one period is not accurate, the detection of
the following periods will be affected. The detection errors
are propagated and compounded throughout the whole
cycle identification. For these reasons, we utilize the fact
that the same user’s gait patterns are unique and the conse-
cutive step cycles should present a high correlation in a col-
lected walking trace. We thus extract a person’s gait pattern
as a template by identifying the first distinguishable step
cycle. We then utilize the correlation relationship inherent
in the same user’s walking trace to search for the maximum
correlation between the first distinguishable cycle and the
rest of trace to derive the step cycle sequence.

4.3.1 Template Construction

Let {r(1),...,7(N)} be a sequence of N accelerometer meas-
urements in the vertical axis from a smartphone and we
assume the t;th measurement is the first sample of the kth
step cycle. We do not consider the acceleration in other two
axes because one axis points to the direction the user is
moving and another one points to the direction of the side-
ways movements, which cannot be used to identify the
uniqueness of a user’s gait patterns. To construct the step
cycle template, we need to find the first two consecutive
local minimas 7(7;) and r(t2) in the accelerometer readings
which represent the beginning and the end of the first dis-
tinguishable step cycle Ry = {r(l),71 <! < 12}. To identify
R, we assume the user’s maximum and regular step cycles
have approximate M’ and M samples respectively accord-
ing to the sampling frequency of the accelerometer. Thus,
the beginning of the first step cycle 7; can be found by
searching the minimum value from the first A/" observations

7y = argmin(r(l)),1 <1< M.
I

(1)
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We then search for the end of the first step cycle 7, by
extending M samples from 7;. Because the user’s walking
speed is unknown, the 7, can be determined by relaxing
the searching range by d samples before and after the A/
samples:

o =argmin(r(l)),n1 + M —d<I<tu+M+d. (2
!

Thus, r(r1) and r(t2) are the first two consecutive local
minimas in the sequence of recorded accelerometer read-
ings. The L =19 — 71 consecutive samples of Ry = {r(l),
71 <1< 19} in sequence {r(1),...,7(N)} will then be used
as a template to identify the rest of step cycles in the col-
lected trace. We illustrate template construction in Fig. 2a.

Provided with the knowledge about human walking pat-
terns, we can then determine suitable values for M’, M and
d: The natural cadence of the human walking, irrespective
of what speed he/she walks, is usually in the range of
[45,65] step cycles/min [28] and we assume the sampling
frequency of accelerometer is 50 samples per second. Thus,
the number of samples in one step cycle is in the range
[46,67] samples/step and each regular cycle contains about
(46 4 67)/2 ~ 56 samples. With the aid of such clues, in this
work, we empirically set the M’ as the number of samples
that a maximum step cycle has with M’ = 67 samples and
M as the number of samples a regular cycle has with
M = 56 samples, respectively. The search range d is then set
as the half of the difference between the maximum and
minimum number of samples the step cycle has (i.e., d =
(67 —46)/2 =~ 11 samples).
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4.3.2 Step Cycle Sequence Extraction

The template Ry = {r(l), 7y <1< 15} contains the samples
of user’s first step cycle. We assume there are S step cycles
in the collected trace. To identify the subsequent step cycles
Ry, k=2,3,...,5, in a collected trace, we utilize the step
cycle correlation inherent in a user’s walking trace. The cor-
relation among step cycles of the same person allows us to
extract a user’s step cycles accurately due to the fact that the
correlation coefficient between two step cycles of the same
person is robust to distorted readings caused by irregular
movement of the user’s body. Further, after examining the
correlation coefficient between the template and subsequent
step cycles, we can update the template dynamically based
on the changes in user’s walking speeds. This is because the
step cycles should be highly correlated if the speed of the
template step and subsequent steps are similar. Thus, a sig-
nificant decrease in correlation coefficient between two step
cycles indicates a large speed change. The template, conse-
quently, should be updated based on the new speed (shown
in the next step).

Fig. 2b illustrates the step cycle sequence extraction using
Pearson correlation method [29]. To identify the subsequent
step cycles, the template R, is slid across the recorded acceler-
ometer readings and the Pearson correlation coefficients
between the template R; and the consecutive L samples in
recorded accelerometer readings are calculated. The Pearson
correlation coefficient is a statistical method that measures the
degree of the linear relationship between two given vectors.
The Pearson correlation coefficient value ranges from —1 to 1.
Correlation 1 and —1 means that there is a perfect positive/
negative linear relationship between the two vectors. Specifi-
cally, given the template R, with length L =1, — 7; and
consecutive L samples D; = {r(l),i <l<i+L},i=1,...,
N — L, from the recorded accelerometer readings {r(1),...,
r(N)}, the Pearson correlation coefficient is defined as

L—1 (r(zﬁzH—zl) (r(i+l)757'>
=0 o(Ry) o(D;)
L—-1 ’

¢ = corr(Ry, D;) = 3)

where R; (D;, resp.) and o(R;) (o(D;), resp) are the mean
and standard deviation of R; and D;. The values in Pearson
correlation coefficient sequence C = {¢;,i=1,...,N—L}
increase and decrease successively, indicating similarity
between the template R; and the segment D;. The peaks
arise periodically in PCC sequence C' indicating good
matches between the template and the subsequent D;s.
Thus, these periodical peaks can be used to identify the sub-
sequent step cycles. The local maximas in C are detected
and marked as beginning points of each walking step,
which occur at the heel strikes of a swing leg. The algorithm
of step cycle sequence extraction is provided in Algorithm 1.

In Fig. 2b, the blue line in the upper plot represents the
accelerometer readings on smartphones. The green line in
the lower plot represents the correlation coefficient
sequence C' computed between the step cycle template and
each data segment D;. The step cycles are identified by
searching periodical local peaks in sequence C. The identi-
fied step cycle sequence Ry is

Rk:{r(l)atkgl<tk+1}ak:17“'7s' (4)
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Algorithm 1. Step Cycle Identification

INPUT:
Data = {r(1),...,7(N)}; A sequence of accelerometer readings
Ry = {r(l),r1 <1< to}; The constructed template

L=1y —1y; Number of samples in extracted template
counter = 0; Number of peaks in PCC sequence
PROCEDURES:

forAlli e [1,N — L] do
D, ={r(l);i<l<i+ L};
¢; = corr(Ry, D;);
end for
forAlli € 1, N — L—1]do
if¢; > ¢;1&c; > c¢i1&e; > threshold then
counter = counter + 1;
Teounter = 7:;
end if
end for
Return number of step cycles S = counter — 1
Return step cycle sequence R = {r(l),t <l<tp}, k=
1,...,8

4.3.3 Template Update

The length of the step cycle changes as the user’s walking
speed varies. With the help of the correlation coefficient
between the template and the subsequent step cycles, we
are able to tell when the user’s speed changes, and update
the template timely once the speed change is detected.
The update decision may be system triggered. Particu-
larly, the system automatically searches the peaks in the
Pearson correlation coefficient sequence: if most of the
peaks (e.g., 80 percent) in a past time period (e.g., a few
minutes) are lower than a threshold (e.g., 0.8), the tem-
plate update is triggered. A new template R; will be gen-
erated using the Template Construction scheme on newly
collected accelerometer readings.

4.4 Step Cycle Interpolation

A user usually walks at different speeds in different sce-
narios such as taking a leisure walk after dinner or
walking rapidly to catch a commuter train after work.
Furthermore, the walking speed of a user during the run-
time data collection process is most likely different from
the speed when the user profile is constructed. The num-
ber of samples in step cycles varies as the user’s walking
speed changes. To deal with variable walking speeds, our
framework preforms step cycle interpolation. This inter-
polation step allows us to perform robust user verification
by directly measuring the similarity between the step
cycle sequence in the user profile and the interpolated
sequences obtained from run-time measurements under
different walking speeds. More importantly, by using
Step Cycle Interpolation, a user only needs to upload one
accelerometer trace under any speed at its convenience
for user profile construction without requiring extensive
uploading of multiple traces to cover different speeds.

To perform step cycle interpolation, we align the
extracted step cycle sequence to a reference step cycle with
length P by using cubic spline interpolation [30], a fast, effi-
cient and stable method of function interpolation. Further,
we choose a large P (e.g., P = 300 samples) so that it is
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Fig. 3. lllustration of step cycle interpolation for a user under three typical
walking speeds: slow, normal and fast.

larger than any user’s longest one step cycle irrespective of
what speed the user walks. The step cycle sequence after
interpolation is represented as

N, = {r(L,k),...,7(P,K)},k=1,...,5. )

To capture the pattern of all the step cycles, we average
over the interpolated step cycles. Thus, the final interpo-

lated step cycle can be represented as I = {7(1),...,7(P)}
with

S .
) =Y e p ©
k=1

The algorithm Step Cycle Interpolation is provided in
Algorithm 2. Fig. 3 shows an example on how the final
interpolated step cycle is extracted under different walk-
ing speeds for a specific user. In Fig. 3, the collected accel-
eration readings under three representative speeds (i.e.,
slow, normal, and fast) are depicted in the left side of the
figure. The detailed description of these three speeds are
presented in Section 5.1. The final interpolated step cycles
corresponding to these three different speeds are shown
in the right side figure. Before interpolation, it is hard to
directly compare the step cycles under different speeds
due to different lengths of the step cycles. After Step
Cycle Interpolation, we find that the final interpolated
step cycles under three different speeds are highly corre-
lated regardless of the walking speeds. This result is
encouraging as it indicates a particular user’s gait pattern
is unique and not sensitive to a user’s walking speeds.

Algorithm 2. Step Cycle Interpolation

INPUT:
R ={r(l),t, <l<tpm}t,k=1,...,S;  Identified step cycles
P = 300; Number of samples
PROCEDURES:

for Allk € [1,5] do
{r(1,k),...,7(P, k)} = Interpolation({r(zy),...,r(tkt1)});
end for
for Allj € [1, P] do
() = i
end for
Return interpolated step cycle I = {7(1),...,7(P)}
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4.5 Similarity Comparison

Our Similarity Comparison component can be implemented
in two ways: user-centric and server-centric. In the user-cen-
tric approach, our scheme uses an approach which utilizes
weighted Pearson correlation coefficient with low computa-
tion complexity in similarity score computation to verify
honest users. However, in the server-centric approach, our
scheme uses the Support Vector Machine classifiers for user
verification to achieve a higher accuracy.

4.5.1  User-Centric Approach

The interpolated step cycle represents a user’ gait pattern.
Based on the foot motion, a step cycle can be further decom-
posed into several sub-events such as initial contact, loading
response, and midstance [31]. The user’s gait pattern in cer-
tain sub-events may remain constant while others change.
The sub-events within a gait pattern remain constant should
be treated more significantly since they can better represent
the uniqueness of the user’s gait pattern. Thus, to capture
this observation in a quantitative way in our user-centric
approach, we propose to use weighted Pearson correlation
coefficients when computing the similarity between the
extracted gait patterns and the user profile.

We next calculate the weights from sub-events in a user’s
step cycle. Based on the interpolated step cycle sequence
N,, we first equally divide P samples in the interpolated
cycle into B (e.g., B=06) blocks: {P,,...,P1},n=0,...,
B —1 with Py =1 and Pp = P. Thus, the average sample
distance over these blocks can be represented as: Dist =
{d,,n=0,...,B— 1}, where each d, is defined as

S S rens) (e, k) — (e, D)

d, = ica )
(S =1)xSx (P —P,+1) ™

Each d,, in Dist measures the average sample distance in the
nth block between each pair of S interpolated step cycles.
Based on the sample distance, we define weights over these
blocks as {w,,n =0,...,B — 1}, where each w, is defined
as: w, = 1/d,.

We then define the similarity score between the final
interpolated step cycle obtained from run-time measure-
ment I, ={79(1),...,7(P)} and the user profile I; =
{7"(1),...,7"(P)} by computing weighted Pearson correla-
tion coefficient with the weight as {w,,,n =0,...,B— 1}

C(ln, I;) =
Zf;(} corr({?h(Pn), ..

7?h(Pn+])}7 {?g(Pn)v cee ’?g(PmH)})wn
S onmg wn

®)

If the similarity scores are lower than a pre-defined thresh-
old, the framework will declare the presence of the user
spoofing for this particular user ID.

Feasibility study. We study how the similarity scores
change when acceleration readings are collected from differ-
ent users under three typical walking speeds (i.e., slow, nor-
mal, and fast). We collect 6 traces per user with two traces per
walking speed. Fig. 4 plots the final interpolated step cycles
generated for these two users and the cumulative distributed
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Fig. 4. Anillustration of interpolated step cycles of user 1 and 2 under dif-
ferent walking speeds and CDF of their similarity scores.

function (CDF) of the similarity score. From the left subfigure
in Fig. 4, we observe that the final interpolated step cycles of
a particular user are very similar even at three different walk-
ing speeds, while the final interpolated step cycles between
two users differ significantly. Furthermore, from the right
subfigure, the similarity scores are high (larger than 0.8) for
the same user regardless of walking speeds. Whereas the
similarity scores reduce to [—0.2,0.3] between two users.
These observations strongly confirm the feasibility of using
our user-centric approach to detect user spoofing.

4.5.2 Server-Centric Approach

In our server-centric approach, we view the user verifica-
tion problem as a two-class classification problem and we
choose Support Vector Machine as our classifier. SVM has
been successfully used for a number of classification
problems especially if only little sample data is available
for training [32].

As shown in Section 4.5.1, the final interpolated step
cycle can characterize a user’s unique gait pattern and is not
sensitive to the walking speeds. The final interpolated step
cycle can be used to distinguish different users. Thus, we
consider each sample value within an final interpolated
step cycle as a feature (e.g., we have P = 300 features). In
our classification model, we label the original user’s data as
the positive class and all other users’ data as the negative
class. In particular, to train the SVM classifier for each user,
we select U traces from this user. For each trace, we average
all interpolated step cycles to get the final interpolated step
cycle. Thus, we have U final interpolated step cycles, labeled
as positive instances. We then choose U traces from each of
the rest users (e.g., the rest is W users) and similarly calcu-
late U final interpolated step cycles for this user, labeled as
negative instances. Thus, we have U positive instances and
U x W negative instances as our training set for each spe-
cific user. Training instances (including positive and nega-
tive ones) are put together in the training data set to train
the SVM classifier. In the user verification phase, the
extracted features (i.e., interpolated step cycles) obtained
from run-time measurement is input to the user’s classifica-
tion model and then SVM classifier outputs a predictive
label. If the label is positive, the user verification is a success.
Otherwise, the label is negative, indicating the presence of
user spoofing for this particular user under verification.

Minimum training size study. We conduct experiments to
determine the minimum values of U and W so that we can
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Fig. 5. Server-centric approach: study of training size to obtain a stable
SVM classifier.

create a stable SVM classifier for each new user when join-
ing the system. We keep both user profile trace and run-
time measurement trace length as 20 seconds under normal
walking speed. We then incrementally increase the values
of U and W and check which point can generate a stable
classifier. Figs. 5a and 5b depict the detection rate and false
positive rate of our server-centric approach when W is
changed from 1 to 25 users at the interval of 4 users under
different values of U.

We find that the detection rate and false positive rate sta-
bilize when W (i.e., the number of users in the negative
class) exceeds 13 users and U (i.e., number of training traces
from each user) exceeds four instances: over 90 percent
detection rate and less than 10 percent false positive rate
can be achieved. It indicates that we need to select at least
13 users in the negative class and choose at least four traces
from each user to create a stable SVM classifier. Thus, unless
otherwise specified, we choose W = 13 users in this paper.

5 PERFORMANCE EVALUATION

In this section, we conduct experiments using the readily
available accelerometers embedded within smartphones to
evaluate the effectiveness of our user verification system
under the presence of user spoofing. The following sections
detail our experimental methodology and results.

5.1 Experimental Methodology

We use HTC EVO smartphones equipped with accelerome-
ter that supports 50 Hz sampling rate to collect data from vol-
unteered users. Each HTC EVO smartphone runs Android
operating system with 192 MB RAM and a 528 MHz
MSM7200A processor. The accelerometer readings are col-
lected when the users are walking and then written into a log
file on a smartphone. Of the three dimensional accelerometer
signals retrieved from the smartphone, only the acceleration
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in vertical direction is used as it is sufficient to capture the
user’s unique gait patterns. Additionally, we experiment
with three representative user walking speeds, namely slow
(slower than 0.7 m/s), normal (about 0.7 m/s-1.1 m/s), and
fast (faster than 1.1 m/s). During the experiments, we let
each user keep the phone in three commonly used positions
including hip pouch, waist pouch and pant pocket. Unless other-
wise specified, the accelerometer readings collected from hip
pouch position are used to present evaluation results.

Trace collection. We collect accelerometer traces from 26
volunteers for our evaluation. A size of 26 users is quite typ-
ical in user monitoring and verification studies [6], [33]. To
test the robustness of our system, each volunteer can walk
with different shoes in our six-month trace collection
period. Unless otherwise stated, each trace represents accel-
erometer readings of a user walking for a period of about 10
minutes. In the user-centric approach, user profiles are con-
structed from each user based on the traces collected. In the
server-centric approach, a per-user SVM-based classifier is
created for each smartphone placement position. To evalu-
ate the robustness of our system, we study two representa-
tive attack scenarios.

Robustness testing. We first test the scenarios where a
spoofer does not have the knowledge of an adversary user’s
gait patterns (i.e. random attacks). Thus, we choose each
user as an adversary user, and use the rest of the users as
spoofers to launch user spoofing attacks. Spoofers are told
to walk using their own walking styles during trace collec-
tion. For each spoofer, we collect traces of his regular walk-
ing speed as well as traces with varying walking speeds
where he modifies his walking speed every 10 seconds.

We then study the scenarios where the spoofer has the
knowledge of the walking styles to perform the mimic attack.
Thus, we choose eight users as adversary users. We then
select another 10 users as spoofers whose physical character-
istics are similar to the selected adversary users to launch the
mimic attack. For each smartphone placement, a spoofer
observes the adversary user and then mimic his/her walking
styles to produce traces from each walking speed.

For each user, we construct a user profile in the user-cen-
tric approach and train a SVM classifier in the server-centric
approach. In total, we collect 3,048 accelerometer traces
over 6 months to evaluate the robustness of our system.

Metrics. We use the following metrics to evaluate the
effectiveness of our user verification system:

e Detection rate. It is defined as the percentage of attack

instances that are correctly identified by our system;

e False positive rate. It is defined as the percentage of

non-attack instances that are mistakenly detected as
attack instances.

We first present the evaluation of our step identification
scheme in Section 5.2. We next test the robustness of our
system under random attacks from Sections 5.3 to 5.5. The
robustness of our system under mimic attacks is then evalu-
ated in Section 5.6.

5.2 Comparison of Step Cycle Identification

In the first set of experiments, we evaluate the effective-
ness of our proposed step cycle identification scheme by
comparing it with an existing method that identifies
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cycles based on local minimum searching [5], [6], [20]. For
comparison, we use 15 walking traces from five users
with one minute length for each trace. Thus, there are
three traces from each user under three different walking
speeds. We compare the step cycle detection rate, which is
the percentage of step cycles that are accurately identi-
fied, of our proposed method to the existing method.

Fig. 6 depicts the cumulative number of identified step
cycles and the corresponding detection rate with increasing
number of walking traces for both our proposed method
and the existing method. First, we observe that the number
of the step cycles identified by our method stays very close
to that of the actual number of step cycles present in each
trace (reported by each user), whereas the gap between the
curve of using the existing method and that from the actual
step cycles is significantly larger than that of our proposed
method. Therefore, the step cycle detection rate of our
scheme is significantly higher than that of using the existing
method: our method can achieve a step cycle detection rate
over 90 percent with different number of walking traces,
while the step cycle detection rate ranges from 50 to 70 per-
cent for the existing scheme. These observations indicate
that our proposed step cycle identification scheme can
derive step cycles much more accurately than the existing
schemes [5], [6], [20]. This is because the existing schemes
only rely on local minima searching which is easily affected
by the noise caused by irregular movement of a user. Fur-
ther, the detection errors also propagate and affect the accu-
racy of subsequent cycle detections. Whereas our method
exploits the high correlation inherent within a user’s step
cycles and is more robust to such noise.

5.3 Detection Latency Study

The detection latency study tests the robustness of our sys-
tem when run-time measurements of different durations
are used for attack detection. Specifically, we evaluate the
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Fig. 7. User centric approach: detection latency of random attacks by
varying the duration of run-time measurement trace and user profile
trace.

detection performance when the run-time measurement
trace length equals to “10 seconds”, “20 seconds” and “40
seconds” respectively, under normal walking speed. The
same corresponding length of the user profile trace is used.
The time length of “10 seconds”, “20 seconds”, and “40 sec-
onds” corresponds to about 9, 18 and 36 step cycles respec-
tively under the normal speed.

User-centric approach. Fig. 7 presents the detection rate and
false positive rate of random attacks under different detection
thresholds. We first observe that the longer traces result in bet-
ter detection performance. In particular, our scheme can
achieve over 80 percent detection rate with less than 10 per-
cent false positive rate when the trace length is longer than 20
seconds. This is because more step cycles can be identified in
a longer trace which captures of a user’s unique gait pattern
better. The encouraging observation is that a trace length of 20
seconds is sufficient for our scheme to achieve a reasonable
detection rate and a low false positive rate.

Server-centric approach. Fig. 8 presents the detection rate
and false positive rate of random attacks using different
number of training traces from each user (i.e., U). Similarly,
better performance can be achieved when the trace length is
longer than 20 seconds: our server-centric approach can
achieve over 90 percent detection rate with less than 10 per-
cent false positive rate. It indicates that a trace length of
20 seconds is sufficient to achieve a stable detection rate and
false positive rate for server-centric approach. Further, we
also observe that the detection rate and false positive rate
stabilize when U exceeds four traces, which demonstrates
that having four training traces from each user is sufficient
to create a stable SVM classifier. Moreover, when compar-
ing these results with those obtained using the user-centric
approach in Fig. 7, we observe that our server-centric
approach can yield higher accuracy. This is because the
server has all the users’ gait information and uses a more
powerful data mining technique for the verification.
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Fig. 9. User centric approach: robustness study of random attacks under
different walking speeds with user profile/run-time measurement traces
of 20 seconds.

5.4 Walking Speed Study

We next present our study using the run-time measure-
ments with different walking speeds or varying walking
speeds.

5.4.1 Robustness against Different Walking

Speeds Study

We first study the robustness of our method under the sce-
narios where the run-time measurement traces are of differ-
ent walking speeds from that used for constructing a user
profile. Specifically, the run-time measurement traces are in
slow, normal, and fast walking speeds, respectively. The
duration of both user profile traces and run-time measure-
ment traces is set as 20 seconds and a user profile is con-
structed from traces collected with a normal walking speed.

User-centric approach. Fig. 9 shows the detection rate and
false positive rate under random attacks using different
detection thresholds. We observe that the detection rate
increases as the detection threshold increases. This is because
with higher detection threshold, it is easier for our scheme to
detect traces which are from different users. Further, we find
that the overall detection rate remains around 80 percent and
the false positive rate is lower than 10 percent. Moreover, the
figure clearly shows similar detection rate and false positive
rate are achieved even if the traces of run-time measure-
ments are collected using different walking speeds from that
used to construct a user profile. This demonstrates that our
system operating the user-centric approach is robust even if
the user is walking under different speeds.

Server-centric approach. Fig. 10 shows the detection rate
and false positive rate under random attacks using different
number of training traces from each user (ie., U). We
observe that the overall detection rate remains over 90 per-
cent and the false positive rate is lower than 10 percent
when U exceeds four traces. Further, the similar detection
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Fig. 10. Server centric approach: robustness study of random attacks
under different walking speeds with user profile/run-time measurement
traces of 20 seconds.
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Fig. 11. User centric approach: varying speed study of random attacks
using user profile traces of different walking speeds.

performance is achieved even if the traces of run-time meas-
urements are collected using different walking speeds. This
indicates that our system operating server-centric approach
is also robust against different walking speeds.

5.4.2 Varying Walking Speed Study

We then evaluate the effectiveness of our method using the
run-time measurement traces with varying speeds. We keep
the user profile trace as 20 seconds while varying the dura-
tion of the run-time measurement traces.

User-centric approach. Fig. 11 plots the Receiver Operating
Curve (ROC) under random attacks when the detection
threshold changes from 0.65 to 0.9. We show the results
using the run-time measurement traces of 20-second
(Fig. 11a) and 40-second (Fig. 11b) long. The legends “User
profile: slow”, “User profile: normal” and “User profile: fast”
denote the traces for constructing a user’s profiles are cho-
sen from constant speed traces with slow, normal and fast
walking speeds, respectively.

Similarly, the overall performance of our method can
achieve over 80 percent detection rate with less than 10 per-
cent false positive rate. This shows that our system operat-
ing user-centric approach is robust to the dynamic walking
speed. Further, we observe that the detection rates under
user profiles constructed from traces of different speeds are
comparable when the false positive rate is around 10 per-
cent, indicating our system is not sensitive to the walking
speeds of training traces. With a user profile constructed
from traces with normal speed, the detection performance
is slightly better than that of with other speeds when the
false positive rate is below 10 percent.

Server-centric approach. Fig. 12 depicts the detection rate
and false positive rate under random attacks when the num-
ber of training traces (i.e., U) changes from 3 to 6. We show
the results using the run-time measurement traces of 20-sec-
ond (Fig. 12a) and 40-second (Fig. 12b) long. The legends
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Fig. 12. Server centric approach: varying speed study of random attacks
using user profile traces of different walking speeds.
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“Det. Rate” and “False Pos.” denote the detection rate and
false positive rate, respectively.

We observe that our method can achieve over 90 per-
cent detection rate with less than 10 percent false positive
rate. This shows that our system operating server-centric
approach is also robust to the dynamic walking speed.
Further, similar performances can be achieved under the
user profiles constructed from different speeds. This indi-
cates that our server-centric approach is not sensitive to
the walking speed of training traces. Again, as we have
observed previously, the detection rate and false positive
rate also stabilize when U exceeds four traces, which fur-
ther confirms that having four traces is sufficient for our
server-centric scheme.

5.5 Smartphone Placement Study
We further evaluate our system when the phone is placed in
other two body positions: the waist pouch position and pant
pocket position. The legends “Hip”, “Waist Pouch” and
“Pant Pocket” denote the traces are collected from the hip
pouch position, the waist pouch position and the pant
pocket position, respectively. For each position, the dura-
tion of both user profile traces and run-time measurement
traces is set as 20 seconds under normal walking speed.
User-centric approach. Fig. 13 presents the detection rate
and false positive rate under random attacks using different
detection thresholds when smartphones are placed in differ-
ent body positions. We observe that the overall detection
rate remains over 80 percent and the false positive rate is
lower than 10 percent. Further, the similar detection rate
and false positive rate are achieved even if the traces are col-
lected from different body positions. This demonstrates that
our system operating user-centric approach is robust even if
the smartphones are placed on different body positions.
Server-centric approach. Fig. 14 depicts the results from dif-
ferent body positions under random attacks using different
number of training traces from each user (i.e., U). Similarly,
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Fig. 14. Server centric approach: performance comparison of random
attacks under different smartphone placements.

the overall performance of our server-centric approach can
achieve over 90 percent detection rate with lower than 10
percent false positive rate on each body position. This veri-
fies that our system operating server-centric approach is
also not sensitive to the smartphone placement.

5.6 Robustness to Mimic Attacks

Finally, we evaluate the effectiveness of our user verifica-
tion system under mimic attacks. The duration of both user
profile traces and run-time measurement traces is also set as
20 seconds under normal walking speed. The legends
“Mimic” and “Random” denote the run-time measurement
traces are collected from the mimic and random attack sce-
narios respectively. The results from different smartphone
placements are also presented.

User-centric approach. Fig. 15 plots the ROC under mimic
attacks and random attacks when the detection threshold
changes from 0.65 to 0.9. The overall performance of our
user-centric approach can achieve over 80 percent detec-
tion rate with less than 10 percent false positive rate under
mimic attacks in three smartphone placements. Further,
we observe that the performances under random attacks
and mimic attacks are comparable, indicating that it is
hard for a spoofer to mimic other users’ gait patterns well
and fool our user verification system operating the user-
centric approach.

Server-centric approach. Fig. 16 plots the detection rate and
false positive rate under mimic and random attacks when
the number of training traces (i.e., U) is changed from 3 to 6.
We also observe that similar performances can be achieved
under random attacks and mimic attacks: the overall perfor-
mance of our server-centric approach remains over 90 per-
cent detection rate with less than 10 percent false positive
rate in both scenarios under three smartphone placements.
This further indicates our system operating server-centric
approach is also robust to mimic attacks under different
smartphone placements.
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Fig. 15. User centric approach: robustness study of mimic attacks by keeping the duration of both run-time measurement trace and user profile trace

as 20 seconds with normal walking speed.
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trace as 20 seconds with normal walking speed.

6 CONCLUSION

In this paper, we propose a user verification system leverag-
ing unique gait patterns derived from acceleration readings,
which has the capability to mitigate user spoofing in emerg-
ing mobile healthcare systems. Our system employs readily
available accelerometers embeded within smartphones
instead of requiring additional hardware for user verifica-
tion. It exploits the correlation relationship inherited from a
user’s walking traces and extracts the step cycle template
that can uniquely identify each user’s gait patterns. We show
that our step cycle extraction technique is more accurate than
existing studies. Furthermore, our step cycle interpolation
component can perform robust user verification under vari-
ous walking speeds. Our framework can be implemented
either in smartphones (i.e., the user-centric approach) or at
the back-end server (i.e., the server-centric approach). To
evaluate the robustness of our system, real experiments are
conducted when mobile phones are placed on different body
positions (including hip pouch, waist pouch and pant
pocket) with users walking at various speeds. There are total
3,048 traces collected from users’ smarpthones over a period
of 6 months. The extensive experimental results show that
our user verification system can effectively cope with differ-
ent phone placements under various walking speeds. It is
also robust to both random attacks (when the spoofer does
not have the knowledge of the user’s walking styles) and
mimic attacks (when the spoofer possesses the knowledge of
the user’s walking styles).
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